Жесткость воды и ее влияние на развитие растений

Влияние жесткой воды на растения

Все живое существовать без воды не сможет. Ни люди, ни животные, ни тем более растения, которые и существуют за счет непосредственно воды. Но как обеспечить растениям надлежащий уход? Бывает так, что и стоят вроде на солнце, и поливаешь их в меру, а в результате все равно чахнут на глазах. Жесткая вода для растений конечно не важна, но вот вода для них может быть губительной. Нужно очень четко прослеживать баланс, иначе погубить урожай с такой водой достаточно просто.

Жесткость – подвиды и нюансы в работе с растениями

Чтобы растение хорошо шло в рост, чтобы был хороший урожай вода, солнце и удобрения должны найти ту тонкую грань баланса, чтобы нигде не было излишков. Как определить, что и с чем смешивать? Прежде всего, нужно разобраться с показаниями жесткости. Все-таки солнце, тепло и минеральные удобрения поддаются измерению больше, чем показатели жесткости.

На сегодня есть несколько понятий известковости, по которым воду оценивают в разных странах. В этом списке представлены:

У каждой из этих стран есть свои показатели известковости, и выбирая средства для ее понижения, потребитель всегда должен помнить об этих особенностях. Растения для жесткой воды не важны, ей вообще все равно, где образовывать накипь. Но если инструкция к применению средства от жесткости попадется из другой страны, то потребителю лучше иметь под рукой следующую табличку, она поможет ему быстро перевести одни градусы в другие.

Страна и единица

Значение приравненное к российскому показателю

Один градус можно перевести в миллиграммы на эквивалент литр как 0,36. Кроме того понятие известковости воды делиться на две составляющих. Бывает растворимая и нерастворимая известковость. Так вот все средства по умягчению – это средства для борьбы с временной (растворимой) жесткостью. Проще говоря, это карбонаты и гидрокарбонаты солей. Они легко убираются путем простого кипячения или замораживания воды. Но если вода нужна для колхозного поля или же в собственном доме есть целая оранжерея растений, то постоянно нагревать воду означает только одно. Где-то есть емкость, на которой вся жесткость и останется. И будут уже не растения для жесткой воды, а вся накипь на одной поверхности, которую придется чистить постоянно.

К тому же любому агроному следует понимать, что вода в разных районах страны земного шара разная и состав ее будет разный. Так, что где-то что-то нужно думать с очищением и умягчением, а где то можно поливать смело. Так вода в Ленинградской области сама по себе очень мягкая. Ее спокойно можно пить сразу из под крана и растениям жесткая вода данной области ничем не грозит, т.к. в ней допустимый уровень жесткости.

Если растений в доме не так уж много и есть возможность покупать специальную воду для полива, то лучше работать по такой схеме, в случае же если это плантации теплиц, то следует поставить умягчающе-очищающие установки и подпитывать свои растения хорошей сбалансированной водой. В этом случае могут пригодиться мембранные устройства. Ведь чтобы получить хорошую заданную воду, нужно установить соответствующую мембрану. Зато растения точно не будут погибать от плохой воды.

Растения и вода – основные требования

Растения без воды не выживут, это аксиома. Только разве кактусы могут просуществовать долгое время без жидкости. Остальные аквариумные растения для жесткой воды или какой-то другой, рассматриваются как главный потребитель. Они не будут расти и цвести без нее.

В обязательном порядке, при оценке воды для полива проверяют ее реакцию на примеси. Чтобы растения чувствовали себя хорошо, нужна нейтральная или слабокислая реакция. То есть излишков любых примесей в воде быть не должно. И тогда она отлично будет сотрудничать с растениями.

Где потребитель может достать воду для полива? Вариантов, как известно, немного. Это центральное водоснабжение, свой колодец или скважина и наконец, ближайшие первичные источники, в том числе и дождевая вода.

С водопроводной водой по идее должно быть все нормально, но излишек жесткости и хлорированности делает ее применение ограниченным. Или же нужно монтировать систему очищения.

Вода из скважины или колодца хороша тем, что там достаточное количество минералов и всяких примесей. Здесь есть только один риск, примеси могут быть в излишке. И тогда никакого положительного эффекта от полива такой водой не будет.

Если брать воду из близ лежащего озера, то там может быть огромное количество самых разных примесей – и химикаты, и разложившиеся частицы и слитые в эту воду отходы. В общем, целый букет, никому не нужных примесей.

Почему лучше использовать дождевую воду?

Лучше всего использовать для полива дождевую воду. Растения для жесткой воды не подходят, а вот для дождевой, которая намного мягче водопроводоной они идеальны. Кроме этого, дождевая вода – это всегда вода с большим количеством растворенного кислорода. Это естественная среда для роста и плодоношения растений. Правда нужно учитывать и экологическую безопасность района, где выпал дождь. Если район неблагополучный, то все достоинства дождевой воды могут погасить кислотные дожди. Чтобы использовать дождевую воду, потребитель должен следовать определенным правилам.

Дождевую воду нельзя собирать, как минимум в течение получаса после начала проливного дождя, если до этого его долго не было. Стекая по крыше, вода собирает весь мусор, который уже скопился на ней. И только спустя минут двадцать уже начинает идти чистая вода, которую смело потом можно использовать для поливов.

Что касается известковости воды, то постоянная хорошо влияет на обменные процессы в растениях, помогает им хорошо идти в рост и плодоносить, а временная, та самая с которой можно бороться, нарушает кислотно-щелочной баланс в растениях. Важно помнить, что поливать растения жесткой водой нельзя, т.к. происходит резкий рост количества щелочных примесей, и у растений могут наблюдаться хлорозы из-за подобных примесей.

Что касается растений для жесткой воды в аквариуме, то там нужно помнить еще и о том, что кроме растений, есть еще и рыбки, и тритоны, и улитки. В этом случае воду умягчают путем подкисления. Для этого используют безвредную и слабенькую щавелевую кислоту. Но полностью устранять кальций и магний нельзя. Без них и растения быстро погибнут и рыбки. Иногда еще советуют применять растворимую соль. С ней реакции в воде происходят быстрее. А выделяющийся азот еще и подпитывает растения. Придется перечитать немало литературы потребителю, чтобы понять, как составить правильную воду для аквариума.

Вода в аквариуме с растениями

В пошаговой инструкции по созданию акваскейпа для новичков вы уже читали о параметрах воды в аквариуме с растениями, чему посвящена целая глава инструкции – Водоподготовка. Однако по-прежнему возникают вопросы касательного подбора оптимальных параметров воды в аквариуме и как их получить. В этой статье будут даны не только показатели рН и жесткости воды для аквариума с растениями, но и описаны методы как эти параметры изменить, если водопроводная вода имеет неподходящие параметры воды для выращивания аквариумных растений.

Какую воду заливать в аквариум с растениями

Вариантов на самом деле много: водопроводная вода, вода из источника, дождевая вода, кипяченая вода, вода после фильтра обратного осмоса, дистиллированная вода, реминерализованная вода. Все это вода, но суть не в ней, а в том, что в этой воде содержится. В основном в воде содержаться минералы, причем основные это соли жесткости (сульфаты и карбонаты кальция и магния) и содержаться они в разной воде в разных количествах. Иногда их слишком много, что мешает многим аквариумным растениям. А иногда их слишком мало, что тоже не приветствуется растениями, потому что минералы, содержащиеся в воде, работают точно также как и удобрения для аквариумных растений.

Чаще всего именно водопроводную воду используют для выращивания аквариумных растений. Это удобно и экономично. Но следует не забывать, что водопроводная вода часто хлорируется и может быть небезопасна для рыб в аквариуме. При подмене воды в аквариуме для устранения хлора аквариумисты обычно используют специальные средства, которые также связывают тяжелые металлы и содержат витамины для уменьшения стресса рыб такие как AQUAYER АнтиТоксин Vita.
Если параметры водопроводной воды не подходят для выращивания аквариумных растений, то их можно подрегулировать. Методы регуляции параметров воды будут подробно описаны в этой статье. Сейчас давайте все же разберемся в том, что же является подходящими параметрами воды.

рН воды в аквариуме

Начнем с главного – рН кислотность воды в аквариуме. Показатель кислотности рН отображает пропорцию кислот и оснований в воде. По сути, в аквариуме все сводится к пропорции одной кислоты и одного основания. Основание это карбонаты, количество которых иллюстрирует значение КН (карбонатная жесткость). Кислота это углекислый газ – СО2, точнее угольная кислота, которая частично образуется при растворении СО2 в воде. Карбонатная жесткость в аквариуме обычно не меняется. Поэтому основным фактором влияющим на показатель рН – это концентрация СО2. Чем больше концентрация СО2, тем меньше рН. Но нужно учесть еще один немаловажный момент. Со временем в аквариуме могут накапливаться и другие кислоты как следствие естественных биохимических процессов (нитрификация и др.). Поэтому, не смотря на концентрацию СО2, рН в аквариуме со временем уменьшается.

Какое оптимальное значение рН в аквариуме с растениями

Какой показатель рН нужно поддерживать в аквариуме с растениями? Значение рН 6-7 подходит большинству аквариумных растений. Однако, под одно общее правило подводить все виды аквариумных растений не стоит. Каждое растение имеет свой природный ареал обитания и в идеале в аквариуме нужно поддерживать те параметры, к которым растение приспособлено изначально. Многие растения предпочитают мягкую слабокислую воду (рН менее 7), но есть виды, которым вполне пригодна жесткая вода с слегка щелочной реакцией (рН до 8). Например, роталы и тонины хорошо себя чувствуют при рН 5.5 и ниже, но эти условия губительны для хемиантуса микрантемоидеса. Валлиснерия, элодея и многие виды эхинодоруса хорошо растут при рН 7.5-8. Но интервал рН 6-7 является некой точкой пересечения, в которой все эти виды растут приемлемо.

рН воды в аквариуме влияет на многие процессы жизнедеятельности растений, в частности потребления ими питательных веществ. В конце статьи Болезни аквариумных растений указана зависимость потребления питательных элементов от рН воды. Беря во внимание эту зависимость можно смело сделать следующий вывод. Использование одного и того же состава аквариумных удобрений при разных значениях рН воды будет воспринято растениями равносильно использованию разных составов аквариумных удобрений при одном и том же рН воды. Говоря простым языком, если в целях поддержания баланса, используется одно и тоже удобрение в аквариуме, то и показание рН для этих целей нужно стремиться поддерживать одно и тоже. В этом смысле использование рН контролера для регуляции подачи СО2 имеет свои неоспоримые преимущества.

Карбонатная жесткость воды в аквариуме

Как уже упоминалось в предыдущей главе, КН – карбонатная жесткость (или щелочность) оказывает влияние на рН воды в аквариуме. А значит, КН является важным параметром для растительного аквариума.

Карбонатная жесткость воды это количество растворенных карбонатов кальция и магния в воде. Однако встречается вода, в которой значение карбонатной жесткости обуславливается содержанием карбоната натрия или калия. В таких случаях КН может превышать значения GH, что приводит в недоумение многих аквариумистов. Поэтому корректней КН называть показателем щелочности.

Оптимальное значение карбонатной жесткости для аквариума с растениями лежит в интервале КН 3-6. Со временем вода в аквариуме подкисляется, поэтому КН в старых аквариумах может быть выше указанного. Но из этих же соображений лучше избегать падения КН до значений менее 3, так как в случае старых аквариумов рН может опуститься ниже 6.

Общая жесткость воды в аквариуме

GH – общая жесткость воды в аквариуме с растениями не такой важный параметр как КН. Но низкое значение общей жесткости может оказать губительное влияние на аквариумные растения. Почему? Общая жесткость характеризуется содержанием солей кальция и магния.

Читайте также:  Таблетки CO2: для чего нужнв

Кальций и магний нужны растениям для роста и являются макроэлементами, как удобрения. Отсюда следует, что переживать стоит лишь за низкую общую жесткость.

Некоторые виды аквариумных растений начинают показывать признаки недостатка кальция уже при GH 3. Поэтому лучше поддерживать значение общей жесткости начиная от 4 градусов, а для уверенности 6-8 градусов.

Как снизить жесткость в аквариуме

Наиболее распространенный способ смягчения воды, а именно снижения как общей, так и карбонатной жесткости это использование воды после фильтра обратного осмоса. Чистую воду после обратного осмоса использовать в аквариуме нельзя, потому что она имеет GH-0 и KH-0. Но если водопроводная вода жесткая, то воду для аквариума с растениями можно подготовить смешиванием водопровода и осмоса по принципу, описанному в Инструкции в главе про жесткость воды в аквариуме. Такой способ подходит для аквариумов больших размеров.

В случае небольшого аквариума, или нано аквариума, не каждый готов приобретать фильтр обратного осмоса, который по размерам больше самого аквариума и дороже.

Альтернативой может служить специальное средство AQUAYER pH/KH минус, которое снижает карбонатную жесткость и рН, при этом GH не изменяется.

Обратный осмос для аквариума с растениями. Особенности использования

Если выбор остановился на использовании воды отфильтрованной обратным осмосом, тогда нужно знать некоторые нюансы. Как уже упоминалось, такая вода имеет нулевые параметры общей и карбонатной жесткости, что неприемлемо для аквариумных растений. Эту воду нужно восстанавливать до нужных параметров жесткости. Существует два способа восстановления жесткости.

Первый, упомянутый выше, смешивание этой воды с жесткой водопроводной водой. Способ приготовления описан в Инструкции в главе про жесткость воды в аквариуме.

Второй способ – это реминерализация солями кальция и магния. Существует много вариантов смесей для реминерализации води после фильтра обратного осмоса. Некоторые смеси содержать хлорид кальция только потому, что это легкорастворимая соль и ее удобного применять. Однако, с поднятием общей жесткости GH эти соли также существенно поднимают концентрацию хлорида. Хлорид в больших концентрациях угнетает рост растений в аквариуме и этот эффект наиболее заметен на прихотливых растениях. В других смесях используют только сульфаты и хоть они и не содержат хлоридов, но в то же время не восстанавливают карбонатную жесткость (КН), только общую (GH). Если карбонатная жесткость не восстанавливать, в условиях подачи углекислого газа (СО2), рН воды может опускаться ниже значения 6. Некоторые растения могут растворяться при рН ниже 6. Также при нулевой карбонатной жесткости рН может колебаться в больших интервалах, что может вызвать гибель рыб. Смесь минералов Реминерал GH/KH+ позволяет восстанавливать не только общую жесткость, но и карбонатную в оптимальном соотношении. Фактически его формула состоит из тех же самых солей кальция и магния, которые содержаться в природной воде. При этом Реминерал GH/KH+ еще и не содержит хлориды.

Как повысить жесткость воды в аквариуме

Не всегда стоит задача понижать жесткость воды в аквариуме для хорошего роста аквариумных растений. В некоторых регионах водопроводная вода имеет, наоборот, очень низкую жесткость. В таких случаях нужно повышать общую и/или карбонатную жесткость.

Простой, но плохо контролируемый способ повышения жесткости это использование мраморной крошки. Состоит она из карбонатов кальция и магния, поэтому повышает как общую, так и карбонатную жесткость. На небольшой аквариум может хватить и небольшой горсти в незаметном углу аквариума для поднятия жесткости на несколько градусов. Неконтролируемость такого метода заключается в том, что жесткость может подняться и до более высоких параметров.

Более контролируемый способ, но и более сложный заключается в следующем. Для повышения общей жесткости можно использовать смесь сульфата кальция и магния. Например, следующая комбинация повышает общую жесткость (GH) на 3 градуса в 70 литрах воды:
1) 4.8 г сульфата кальция CaSO4*2H2O. Приблизительно 5мл. Можно отмерить шприцом. Эта соль медленно растворяется в воде.
2) 2.8 г сульфата магния MgSO4*7H2O. Приблизительно 3мл. Тоже можно воспользоваться шприцом.
Для повышения карбонатной жесткости можно использовать пищевую соду. Следующее количество соды повышает карбонатную жесткость (КН) на 3 градуса в 50 литрах воды:
4.67 пищевой соды NaHCO3. Приблизительно 5мл. Можно отмерить шприцом. Если найти данные компоненты составляет сложность, то поднять общую и карбонатную жесткость можно с помощью Реминерала.

Возможно, после этой статьи у вас возникнут вопросы. Вы их всегда можете задать на форуме в разделе Вода для аквариума с растениями.

Вода как основа жизни

Вы здесь

Вы здесь

Нет ни одного вещества в мире, которое бы хранило столько тайн, сколько хранит в себе вода. Она влияет на все процессы, которые происходят на планете. Жизнь человека и всего живого на земле зависит от воды. Поэтому надо беречь и ценить эту уникальную жидкость.

Вода – источник жизни на Земле

Нет более важного вещества на планете, чем вода. Почти ¾ поверхности Земли покрыто океанами и морями. Именно круговорот воды в природе определяет глобальный климат планеты.

Тело человека более, чем на половину состоит из воды. Эта жидкость доставляет в клетки органов и тканей питательные вещества и выводит из них продукты распада.

Всю жизнь человек ежедневно сталкивается с водой: пьет, умывается, использует в технологических и других процессах, а также для отопления.

Вода способствует терморегуляции тела человека и совершенно необходима для его дыхания. Пять дней, проведенных без воды, ведут к неминуемой смерти человеческого организма.

Регулярное потребление достаточного количества жидкости улучшает мышление и координационные действия мозга человека.

Роль воды в жизни растений

Вода составляет около 95% массы растений. Одного этого факта достаточно, чтобы понять, насколько она необходима для их роста и развития. Каждый процесс жизнедеятельности растений происходит с присутствием воды и зависит от нее. Недостаток жидкости обычно приводит к гибели растения.

Вода служит средством связи растения с внешней средой, так как в ней растворяются минеральные соли, которые впоследствии поступают через корневую систему внутрь растения. С помощью этой же воды минеральные вещества перемещаются внутри растения.

Вещества, попадающие с водой в растение, не теряют своих полезных свойств и не изменяю химический состав.

Вкратце вода выполняет такие функции в жизни растения:

  • организует поток питательных и минеральных веществ по проводящей системе;
  • произрастание семени невозможно без воды;
  • участвует в процессе фотосинтеза посредством подачи необходимого водорода;
  • наполняет клетки, которые придают растению упругость и поддерживают форму;
  • обеспечивает терморегулирование, предотвращающее разрушение тканей и белков.

Вода является определенной управляющей системой жизни растения в целом. Жидкость обладает свойством энергоинформационной памяти, благодаря чему регулирует физиологические функции растения и всю его жизнедеятельность.

Значение воды для растений невероятно. Ни одно растение, даже растущее в засушливых регионах и не требующее постоянных поливов, не выживет.

Особенности поглощения воды растением

Качество питания растения зависит от влажности почвы. Хорошо увлажненный грунт обеспечивает быстрое поглощение корневой системой воды. Скорость проникновения воды внутрь растения в условиях влажной почвы зависит нескольких факторов:

  • Почвенной влаги, а точнее – крутизны градиента водного потенциала от грунта к корням растения. При снижении уровня влаги в почве этот показатель уменьшается, а сопротивление движению к корням увеличивается.
  • Аэрации почвы. Насыщение корневой системы кислородом крайне важно. Без О2 растение прекращает расти, снижается его физиологическая активность. Пониженное содержание кислорода наблюдается на затопленных и тяжелых глинистых почвах.
  • Температуры грунта. Холодные почвы доставляют меньше воды к корням растений. Это происходит вследствие снижения проницаемости поверхности корней для воды и повышении вязкости жидкости, которая обеспечивает скорость движения ее через почву и корни.
  • Протяженности корней и эффективности их работы. Величина корней не может не влиять на скорость впитывания в них воды. Огромные и порой очень длинные корни деревьев поглощают жидкость медленно. Мелкие и разветвленные корешки впитывают воду быстрее. Эффективность работы корневой системы зависит от площади контактной поверхности и проницаемости.

Пересыхание грунта негативно сказывается на развитии растения и постепенно ведет к его гибели. Не менее важно качество воды, выбираемой для полива. Лучше всего для питания подходят грунтовые воды, а в домашних условиях – очищенная или настоявшаяся вода.

Состояние воды в растении

Для нормальной физиологической деятельности клетка растения должна быть максимально насыщена водой. Содержание воды в растении постоянно колеблется.

В разных растениях и их элементах содержится разный объем воды:

  • в водорослях – 96…98%;
  • в листьях травянистых растений – 83…86%;
  • в листьях древесной растительности – 79…82%;
  • в стволах деревьев – 40…55%;
  • в злаковых зерновках – 12…14%.

Вода в растении может находиться в нескольких формах:

  • Свободная вода, которая легко перемещается по растению и испаряется. Располагается чаще всего в межклетниках, то есть в свободном пространстве.
  • Связанная вода, которая трудно передвигается и испаряется. Находится в основном внутри клетки. Бывает осмотически и коллоидно связанной. Первая – не очень прочная и размещается в вакуоли. Вторая находится в цитоплазме и отличается высокой прочностью. Коллоидно связанная вода выходит из клетки только в условиях сильного обезвоживания растения.

Привычная вода управляет жизнью планеты. Растения питаются водой и дают человеку кислород, чтобы он мог дышать.

Жесткость воды: влияние на растение

Жесткость воде придают растворенные ионы магния и кальция, вернее – повышенное их количество. Такая вода оставляет налет в чайнике при кипячении и очень сушит и раздражает кожу.

При этом показатель рН не указывает напрямую о степени жесткости воды. Жидкость, которая течет из кранов, обладает преднамеренно повышенным рН. Это делается для предотвращения коррозии трубопроводов.

Полив растений жесткой водой приводит к плохому поглощению корневой системой фосфора, железа и других не менее важных веществ. В итоге растение начинает болеть, чаще всего – хлорозом.

Способы смягчения жесткой воды

Оптимальный способ подпитывать растение хорошей водой – смягчить ее. Оказывается, это не трудно и можно сделать несколькими методами:

  1. Кипячением. Этот способ возможно использовать при поливе домашних растений, когда не требуется использование большого объема жидкости. Однако в кипяченой воде нет кислорода, и она не сможет полноценно «насытить» растение.
  2. Замораживанием и последующим размораживанием. Эффективный способ избавления воды от ненужных солей, но также применим только в домашних условиях.
  3. Отстаиванием. Самый популярный метод смягчения воды. Причем используют его и для домашних растений, отстаивая воду в бутылках, и для огородов, оставляя жидкость в большой емкости на несколько дней. Достаточно поставить на участке старую ванную или другую большую тару с водой и в течение 2 – 3 дней не трогать эту воду. Потом ей можно спокойно поливать огородные и садовые растения.
  4. Добавлением щавелевой или ортофосфорной кислоты, а также древесной золы или торфа. Этот способ не всегда удобен и требует знания точного количества необходимого вещества.

Для полива растений лучшей водой считается дождевая. Она насыщена кислородом и обеспечивает быстрый рост и активную жизнедеятельность растений.

Для сбора дождевой воды желательно оставить на улице объемную емкость, в которую напрямую будут попадать осадки. Собирать такую воду с крыш можно примерно через полчаса после окончания дождя, так как в первой «партии» скапливается грязь и пыль.

Жесткость воды и ее влияние на развитие растений

Значение растений в жизни человека не только эстетическое. Растения являются основными источниками пищи человека и многих животных. Они приносят кислород, очищают воздух, что приводит к увеличению концентрации и производительности труда. Таким образом, чтобы пожинать плоды, мы должны научиться сначала, как поливать эту зелень. Убийцей номер один растений является плохое качество воды.

Водопроводная вода фильтруется для безопасности человека, однако растения не согласны со многими химическими веществами, используемыми в этом процессе. Некоторые растения более чувствительны, чем другие, например, пальмы, весьма чувствительны к фтору. Кроме того, водопроводная вода может содержать соли для умягчения, которые могут быть вредными для растений. Белая пленка на почве, это признак того, вода имеет слишком много натрия, который плохо усваивается растениями. Наконец, вода, которая имеет неправильный уровень рН может привести к повреждению растений. Некоторые растения не переносят хлорированной водопроводной воды, в то время как другие растения имеют трудности с мягкой водой. Использование кипяченой и водопроводной воды значительно влияет на рост растений. Знание о природе воды и её влияние на растения очень актуальны сегодня, поэтому я решила исследовать влияние качества воды на рост растений и прорастание семян.

Читайте также:  Перлит как субстрат в гидропонике

Цель: Доказать влияние качества воды на жизненные процессы растений.

•Познакомиться с видами воды различной природы

•Показать роль воды для роста растений и прорастания семян.

Гипотеза: Я предполагаю, что вода с различной pH средой и разной природы по-разному влияет на рост растений и прорастание семян.

Методы исследования: опыт, наблюдение, описание.

Значение воды для жизни растений

Вода составляет до 95% массы растений, в ней или с ее использованием протекают все процессы жизнедеятельности. Поэтому вода необходимое условие для жизни организма. При недостатке воды у растения нарушается обмен веществ.

Вода обеспечивает поток питательных и минеральных веществ по проводящей системе растения.

Прорастание семян зависит от наличия воды.

Вода участвует в процессе фотосинтеза.

Водные растворы, наполняющие клетки и межклетники, обеспечивают растению упругость, таким образом растение сохраняет свою форму.

Растение обязательно должно поглощать воду. Иначе, рано или поздно, жизнь его прервется. Обычно растение поглощает воду исключительно своей корневой системой из почвы. В этом участвуют корневые волоски корней. Листья же через устьица испаряют воду. Смысл поглощения излишек воды, чтобы потом ее испарить, по большей части сводится к тому, что ток воды обеспечивает перенос веществ.

Если испарение воды растением превышает поступление воды, то у растения наблюдается увядание. Так нередко бывает днем, когда жарко. Ночью растение восполняет недостаток, так как испарение в это время суток снижено.

Вода в растение поглощается путем осмоса. При осмосе вода, в которой меньше растворенных веществ как бы засасывается в более насыщенные веществами растворы. Клеточные растворы растений более насыщенные, поэтому клетки впитывают воду.

В результате постоянного поглощения и испарения воды в растении существует постоянный водный обмен, включающий три этапа: поглощение воды корнями, передвижение ее по сосудам проводящей ткани, испарение воды листьями. Ток воды идет через все органы растения. Сколько растение всасывает воды, приблизительно столько оно его испаряет. Лишь доли процента от поступившей воды идут на синтез веществ. Это достаточно большие объемы воды. Так, например, только одно растение пшеницы в поле испаряет около 50 г воды в сутки.

Когда корни поглощают воду, они вместе с ней поглощают и растворенные минеральные соли. Когда вода испаряется, то соли в ней уже отсутствуют, они остаются в растении и используются в обмене веществ.

Любопытно, что лишь 1% находящейся в растении воды участвует в химических превращениях! Остальная вода все время движется, насасывается корнем и испаряется листьями. Вода — это подвижная внутренняя среда организма. Даже у водных растений вода в тканях обновляется, циркулирует по сосудистым пучкам. Благодаря направленному току воды осуществляется доставка в разные части растения “строительных блоков”, необходимых для синтеза биологических макромолекул.

Водный ток идет снизу вверх. Его сила зависит от интенсивности всасывания корней и испарения листьями. Водный ток объединяет все органы растения, переносит различные соединения, питает клетки водой.

Вода поступает в корневые волоски растения вследствие осмоса и испаряет из листьев путем транспирации, поэтому совершенно ясно, что существует довольно постоянный ток воды в растении.

Поглощенная корнями вода и питательные вещества подаются в надземные части растения с большой силой. Это легко наблюдать, если срезать стебель какого-нибудь растения или весной сделать углубление в стволе березы.

Корневое давление может обеспечить подачу воду и питательных веществ на 2-3 м. Существует предел давления, при котором разрывается столб воды – 1 кг на 1 см2, и самая большая высота, на которую насос может поднять воду, равен примерно 10 м.

Вертикальное движение воды в стеблях растений объясняется явлением когезии – взаимного притяжения молекул, в сил которого молекулы воды прочно держатся вместе и противодействуют разъединению. Так, растительной клетке необходимо приложить усилие во много тысяч килограммов на 1 см2, чтобы разорвать нитевидный, заключенный в трубку, столб воды и создать вакуум.

Следовательно, лист может всасывать воду из проводящей системы растения с силой в сотню атмосфер. Благодаря этому вода поднимается до вершины таких деревьев-великанов, как калифорнийские секвойи высотой более ста метров.

Еще два столетия назад полагали, что передвижение веществ из надземной части растения в корни происходит под влиянием силы тяжести самого сока. Но такое толкование не объясняло механизм переброса веществ в те части растения, которые находились в горизонтальном направлении. Поэтому были предприняты попытки иного объяснения – путем диффузии. Но дальнейшие исследования показали, что этим путем вещества передвигаются очень медленно. Например, 1 мг сахара путем диффузии проходит расстояние в 1 м за 2 года и 7 месяцев. Понятно, что, двигаясь с такой скоростью, сахара не могли бы попасть из листьев в корни за весь период вегетации растений.

Для объяснения механизма флоэмного транспорта была выдвинута гипотеза тока под давлением, которая дает самое простое и наиболее широко признанное объяснение дальнего транспорта ассимилятов по ситовидным трубкам.

В кратком изложении гипотеза тока под давлением утверждает, что ассимиляты транспортируются от источника (листьев) к месту потребления (например, корню) по градиенту тургорного давления, возникающего в результате осмоса.

В растении сахароза, образовавшаяся в листе, активно секретируется в ситовидные трубки. Этот активный процесс, называемый загрузкой флоэмы, уменьшает водный потенциал в ситовидных трубках и приводит к тому, что в них путем осмоса поступает вода, попадающая в лист с транспирационным током. В результате поступления воды в ситовидные трубки донора (т.е. листа) сахароза пассивно переносится водой к акцептору (например, в запасающий корень), где сахароза удаляется (разгружается) из ситовидных трубок. Сахароза может здесь либо использоваться, либо откладываться, но основная часть воды возвращается в ксилему и рециркулирует в транспирационном токе.

Изучение влияния различных типов воды на всхожесть семян и рост растений

Очень велика роль водных растворов в биологической среде, они являются основой почвенных процессов, передвижения веществ, прорастания семян и т. д. Вода сплошь и рядом “нарушает” известные физические законы. Одной из таких аномалий являются лед и снег.

Мы очень заинтересовались свойствами снега и льда, так как из литературы и рассказов знакомых огородников нам известно, что на растения хорошо влияет полив талой водой. Есть рекомендации и в популярной литературе по поливу талой водой, например в книгах по садоводству.

Поэтому целью данной работы было:

1. Определить влияние разных типов воды на всхожесть семян.

2. Выяснить разницу во влиянии водопроводной, дистиллированной, дождевой и талой воды и снега на укоренение растений.

1. Определить, в какой из типов воды – лучше прорастают семена.

2. Определить, есть ли разница в размерах корней и ростков в разных водных растворах.

3. Выяснить есть ли разница в количестве образовавшихся корней в разных вариантах опыта.

Скачать:

Вложение Размер
krylov_voda.doc 204.5 КБ

Предварительный просмотр:

Департамент образования города Москвы

Восточное окружное управление образования

ГОУ специальная (коррекционная) общеобразовательная школа – интернат II вида № 30 им. К.А. Микаэльяна

Исследовательская работа на тему:

«Изучение влияния разных типов воды на всхожесть семян и рост растений»

Выполнил: ученик 10 класса

Крылов Илья Константинович

Руководитель: Губарева Елена Юрьевна

– учитель биологии и экологии, победитель ПНПО 2008 года

Москва 2009 год

  1. Свойства воды 4 – 7
  2. Особенности различных типов воды 7 – 10
  1. Приготовление талой воды 11
  2. Определение влияния различных типов воды на

всхожесть семян 11 – 13

  1. Изучение влияния талой воды на рост и развитие корней 13 – 17

Воде была дана волшебная власть стать
соком жизни на Земле.
Леонардо да Винчи

Когда тает весной снег, все просыпается, начинает расти и цвести, поэтому все считают, что талая вода оказывает положительное действие на растения. Вода единственное вещество на земле, которое одновременно и в больших количествах встречается в жидком, твердом и газообразном состояниях. Она находится в вечном круговороте. Растения являются самыми активными участниками этого великого природного процесса.

Очень велика роль водных растворов в биологической среде, они являются основой почвенных процессов, передвижения веществ, прорастания семян и т. д. Вода сплошь и рядом “нарушает” известные физические законы. Одной из таких аномалий являются лед и снег.

Мы очень заинтересовались свойствами снега и льда, так как из литературы и рассказов знакомых огородников нам известно, что на растения хорошо влияет полив талой водой. Есть рекомендации и в популярной литературе по поливу талой водой, например в книгах по садоводству [1].

Поэтому целью данной работы было:

1. Определить влияние разных типов воды на всхожесть семян.

2. Выяснить разницу во влиянии водопроводной, дистиллированной, дождевой и талой воды и снега на укоренение растений.

1. Определить, в какой из типов воды – лучше прорастают семена.

2. Определить, есть ли разница в размерах корней и ростков в разных водных растворах.

3. Выяснить есть ли разница в количестве образовавшихся корней в разных вариантах опыта.

II. Теоретическая часть.

1. Свойства воды.
Вода – самое распространенное и самое загадочное вещество на Земле: ¾ поверхности планеты покрыто морями, океанами, реками, ледниками. Кроме того, вода в больших количествах содержится в земной коре, образуя подземные озера и пропитывая водоносные слои пород. Общее содержание воды на Земле составляет примерно 1500 млн. км 3 (1,45∙10 18 м 3 ).

Внешне вода, кажется, достаточно простой, в связи, с чем долгое время считалась неделимым элементом. Лишь в 1766 году Г. Кавендиш (Англия) и затем в 1783 году А. Лавуазье (Франция) показали, что вода не простой химический элемент, а соединение водорода и кислорода в определенной пропорции. После этого открытия химический элемент, обозначаемый как Н, получил название “водород” (Hydrogen – от греч. hydro genes), которое можно истолковать как “порождающий воду”. Она не подчиняется никаким законам физики и химии, обладает, как говорят ученые, аномальными свойствами. По законам химии она должна кипеть при температуре – 76 °С, и замерзать при температуре – 90 °С. Но мы знаем, что вода замерзает при 0 °С, а кипит при 100 °С. Современные исследования показали, что за незатейливой химической формулой Н2О скрывается вещество, обладающее уникальной структурой и не менее уникальными свойствами.

Не менее интересен и изотопный состав воды. Если принимать в расчет только стабильные изотопы, то их сочетание даст девять сортов молекул, основную массу которых составляет молекулы протиевой (легкой) воды с кислородом-16 – 99,727%. Если рассматривать только более тяжелые молекулы, то окажется, что на три из них приходится 99% от общего объема тяжелых молекул – H2 18О (73,5%), H2 17О (14,7%) и HD16О (11,5%). В воде пресноводных источников содержание тяжелой воды составляет, обычно, около 330 мг/л (в расчете на молекулу HDO), а тяжелокислородной (Н2 18О) – около 2 г/л.

Так в чем же заключаются загадочные, необычные свойства привычной всем жидкой воды? Прежде всего, в том, что практически все свойства воды аномальны, а многие из них не подчиняются логике тех законов физики, которые управляют другими веществами. Кратко упомянем те из них, которые обуславливают существование жизни на Земле.
Первая особенность: вода – единственное вещество на Земле (кроме ртути), для которого зависимость удельной теплоемкости от температуры имеет минимум (37 0 С), из-за этого нормальная температура человеческого тела, состоящего на две трети из воды, находится в диапазоне температур 36-38оС (внутренние органы имеют более высокую температуру, чем наружные).
Вторая особенность: теплоемкость воды аномально высока. Чтобы нагреть определенное ее количество на один градус, необходимо затратить больше энергии, чем при нагреве других жидкостей, – по крайней мере вдвое по отношению к простым веществам. Из этого вытекает уникальная способность воды сохранять тепло. Подавляющее большинство других веществ таким свойством не обладают. Эта исключительная особенность воды способствует тому, что у человека нормальная температура тела поддерживается на одном уровне и жарким днем, и прохладной ночью.
Третья особенность: вода обладает высокой удельной теплотой плавления, то есть воду очень трудно заморозить, а лед – растопить. Благодаря этому климат на Земле в целом достаточно стабилен и мягок.
Все три особенности тепловых свойств воды позволяют человеку оптимальным образом существовать в условиях благоприятной среды.
Имеются особенности и в поведении объема воды. Плотность большинства веществ – жидкостей, кристаллов и газов – при нагревании уменьшается и при охлаждении увеличивается, вплоть до процесса кристаллизации или конденсации. Плотность воды при охлаждении от 100

до 4 оС (точнее, до 3,98 оС) возрастает, как и у подавляющего большинства жидкостей. Однако, достигнув максимального значения при температуре

4 оС, плотность при дальнейшем охлаждении воды начинает уменьшаться. Другими словами, максимальная плотность воды наблюдается при температуре 4 оС (одна из уникальных аномалий воды), а не при температуре замерзания

Замерзание воды сопровождается скачкообразным уменьшением плотности более чем на 8%, тогда как у большинства других веществ процесс кристаллизации сопровождается увеличением плотности. В связи с этим лед (твердая вода) занимает больший объем, чем жидкая вода, и держится на ее поверхности, образуя своего рода плавающее одеяло, защищающее реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.
Однако только анализ строения молекулы воды позволяет понять ее исключительность в живой и неживой природе. Прежде всего отметим, что молекула воды самая маленькая среди подобных трехатомных молекул. Такие молекулы при нормальных условиях образуют газы, а молекулы воды – жидкость. Почему? Потому, что при конденсации воды, формируется жидкое вещество удивительной сложности. Это связано с тем, что молекулы воды обладают уникальным свойством объединяться в группы (Н2О)x.

При комнатной температуре степень ассоциации X для воды составляет, по современным данным, от 3 до 6. Это означает, что формула воды не просто Н2О, а среднее между Н6О3 и Н12О6. Другими словами, вода – сложная жидкость, “составленная” из повторяющихся групп, содержащих от трех до шести одиночных молекул.

Если бы вода при испарении оставалась в виде Н6О3, Н8О4 или Н12О6, то водяной пар был бы намного тяжелее воздуха, в котором доминируют молекулы азота и кислорода. В этом случае поверхность всей Земли была бы покрыта вечным слоем тумана. Представить себе жизнь на такой планете практически невозможно.
При испарении группы H6O3, H8O4 распадаются, и вода превращается практически в простой газ с химической формулой Н2О. Плотность газообразной воды меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия.
2. Особенности разных типов воды.
Талая вода. Она рождается при таянии льда и сохраняет температуру 0 оС, пока весь лед не растает. Специфика межмолекулярных взаимодействий, характерная для структуры льда, сохраняется и в талой воде, так как при плавлении кристалла разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними (“ближний порядок”) в значительной степени не нарушается.

Таким образом, талая вода отличается от обычной изобилием многомолекулярных групп, в которых в течение некоторого времени сохраняются рыхлые льдоподобные структуры. После таяния всего льда температура воды повышается и водородные связи внутри групп перестают противостоять возрастающим тепловым колебаниям атомов. Размеры групп изменяются, и поэтому начинают меняться свойства талой воды: диэлектрическая проницаемость приходит к своему равновесному состоянию через 15-20 минут, вязкость – через 3-6 суток. Биологическая активность талой воды спадает, по одним данным, приблизительно за 12-16 часов, по другим – за сутки.
Итак, физико-химические свойства талой воды самопроизвольно меняются во времени, приближаясь к свойствам обычной воды: она постепенно как бы “забывает” о том, что еще недавно была льдом.
Лед и пар – различные агрегатные состояния воды, и поэтому логично предположить, что в жидкой промежуточной фазе валентный угол отдельной молекулы воды лежит в диапазоне между значениями в твердой фазе и в паре. В кристалле льда валентный угол молекулы воды близок к 109,5о. При таянии льда межмолекулярные водородные связи ослабевают, расстояние Н-Н несколько сокращается, валентный угол уменьшается. При нагревании жидкой воды происходит разупорядочение структуры, и этот угол продолжает уменьшаться. В парообразном состоянии валентный угол молекулы воды составляет уже 104,5о.
Кроме того, в талой воде, нет дейтерия – тяжёлого элемента, который подавляет всё живое и приносит серьёзный вред организму. Дейтерий в больших концентрациях равнозначен самым сильным ядам. Дейтерий тяжело усваивается, что требует дополнительного расхода энергии. Учёными установлено, что даже частичное удаление дейтерия освобождает большие энергетические резервы и значительно стимулирует жизненные процессы в организме человека. Талая же вода сама по себе обладает большой внутренней энергией и обеспечивает человеку хорошую энергетическую подпитку. Дело в том, что ставшие однородными молекулы не мешают друг другу, а движется в резонансе, работают в одной и той же частоте, вырабатывая в результате больше чем при хаотическом движении количество энергии .

Дождевая вода мягкая, она имеет слабокислую реакцию, она обогащена кислородом (приблизительно в 10 раз больше по отношению к колодезной воде). Во все времена она считалась лучшей для полива и других технических нужд, которые возникают в условиях индивидуального дома. Но в настоящее время в дождевой воде могут содержаться примеси отходов химической промышленности, продукты сгорания твердого или жидкого топлива. Эти продукты находятся в атмосфере и оседают на крышах зданий, с которых происходит сбор дождевой воды. Особенно опасны примеси цемента и извести, из-за которых вода становится жесткой и практически полностью теряет свою ценность. Поэтому прежде чем применить дождевую воду, лучше всего сделать ее анализ, особенно в промышленных районах РФ.

Колодезная вода обычно содержит большое количество минеральных веществ. Насыщение колодезной воды минеральными веществами происходит, когда дождевая вода, проникая через грунт, растворяет содержащиеся в почве минералы и после этого попадает в водоносные грунты. Такую воду, прежде чем употреблять на хозяйственные нужды, следует проверить в лаборатории. Это правило в равной степени относится и к родниковой воде.

Речная или озерная вода кроме минеральных загрязнений может содержать промышленные и бытовые отходы, опасные для людей, животных и растений. Поэтому всегда следует соблюдать меры предосторожности и профилактики.

Вода для полива. Жесткость воды.

К воде для полива растений предъявляется целый ряд требований. К основным можно отнести то, что в ней должно быть мало содержание солей и других минеральных веществ, полностью должны отсутствовать токсичные примеси. У поливной воды должна быть нейтральная или слабокислая реакция.

Вода для полива растений может быть взята из сетей водоснабжения (водопроводная вода), колодцев, скважин, родников, из близлежащих водоемов. Так же для полива используется дождевая вода. Каждый вид воды обладает своими особенностями и характеристиками, имеет разную пригодность для полива.

Водопроводная вода проходит фильтрацию и различные стадии очистки, что делает ее пригодной для питья. Эта вода подходит и для полива, содержание в ней минеральных веществ достаточно невелико, но в ней значительно содержание хлора.

Вода из скважины, колодца или родника, наоборот, отличается высоким содержанием солей и минеральных веществ, поскольку, проходя сквозь толщу грунта, вымывает из него ценные минеральные вещества, что является положительным для воды свойством. Но содержание в воде минеральных веществ не должно быть завышенным, иначе она становится непригодной для полива растений.

Вода из водоема менее прочего пригодна для полива, главным образом из-за большого риска содержания в ней токсичных отходов, продуктов гниения, различных химических веществ, бактерий и прочих опасных примесей.

Дождевая вода значительно мягче водопроводной, обладает почти нейтральной кислотной реакцией, в ней довольно высоко содержание растворенного кислорода. Благодаря всем этим характеристикам дождевую воду можно рассматривать как идеальную (и естественную) для полива растений. При этом все же следует учитывать, что в дождевую воду неизбежно попадают вредные химические соединения, тяжелые металлы, пыль, продукты сгорания жидкого и твердого топлива, а это сильно снижает ценность дождевой воды.

Для уменьшения степени загрязнения дождевой воды, при ее сборе, следует соблюдать ряд правил. Дело в том, что у нас нет специальных приспособлений для сбора дождевой воды. Мы собираем ее, стекающей с крыши. И дождевая вода, прежде чем по водостоку попасть в бочку, стекает по крыше, смывая осевшую на ней пыль, химические соединения, сажу и другие вещества. Особенно сильно загрязнена дождевая вода после длительного периода засухи, т.к. количество накопившейся на крышах грязи особенно велико. Поэтому не рекомендуется собирать дождевую воду, если до этого долго не было осадков. Но получаса сильного или затяжного дождя достаточно для того, чтобы очистить крышу от пыли, содержащей вредные примеси. После этого можно начинать сбор дождевой воды для полива.

Жесткость – еще одно свойство воды, обусловленное наличием в ней солей кальция и магния, реже в сочетании с солями железа. Жесткость воды, в зависимости от вида присутствующих в воде соединений кальция и магния, подразделяют на временную и постоянную. Причем стоит отметить, что временная жесткость более вредна для растений, чем постоянная. Благодаря использованию воды с постоянной жесткостью растения снабжаются такими ценными микроэлементами, как кальций и магний. А регулярное поступление кальция положительно влияет на процессы обмена веществ, активизирует деятельность микроорганизмов и в целом улучшает структуру почвы. Помимо всего прочего, постоянная жесткость воды почти не влияет на изменение уровня кислотности почвы. Что же касается временной жесткости воды, то, если она достаточно высока, происходит нарушение кислотно-щелочного баланса почвы в сторону увеличения содержания щелочных соединений. У растений часто проявляются признаки хлороза. Из-за использования воды с временной жесткостью происходит появление твердого осадка на почве, стенках горшка и даже частях растений.

Чаще всего мы, как городские жители, используем для полива хой водопроводную воду. Как правило, она обладает повышенной жесткостью, что подтверждается толстым слоем накипи в чайниках, белым налетом на поверхности земли и стенках горшков. Особенно сильно жесткость воды увеличивается зимой, когда исчезает полностью или сильно сокращается подпитка водоемов дождевой водой. Поэтому кажется, что о причине жесткости воды и способах ее умягчения стоит поговорить подробнее. Для этого придется вспомнить школьный курс химии.

Итак, жесткостью принято называть совокупность свойств воды, обусловленных содержанием в воде катионов кальция (Са) и магния (Mg).На самом деле, все двухвалентные катионы влияют на жесткость воды, просто влияние катионов стронция (Sr), железа (Fe) или марганца (Mn) ничтожно по сравнению с влиянием катионов кальция и магния, а растворимость солей трехвалентного железа и алюминия (Al) мала при уровне кислотности природной воды.

Жесткость воды можно подразделить по видам.

Общая жесткость – суммарная концентрация ионов магния и кальция. Это сумма карбонатной (временной) и некарбонатной (постоянной) жесткости.

Карбонатная жесткость (временная) обусловлена присутствием в воде гидрокарбонатов и карбонатов кальция и магния. Этот тип жесткости воды практически полностью устраняется кипячением воды, и поэтому получил название временной жесткости. При повышении температуры воды гидрокарбонаты распадаются, в результате образуется нестойкая угольная кислота, а кальций и магний выпадают в осадок в виде карбоната кальция и гидроксида магния.

Некарбонатная жесткость (постоянная) обусловлена наличием солей кальция, магния и таких кислот как соляная, серная, азотная. При повышении температуры этот вид жесткости не устраняется, так как эти соли не выпадают в осадок.

Измеряется жесткость воды в градусах (условных единицах, миллиграмм – эквивалентах на 1 литр (мг-экв/л). В нашей стране чаще используются русские или немецкие градусы жесткости. Один градус соответствует одному миллиграмм – эквиваленту кальция (20,04 мг), растворенному в 1 л воды, или одному миллиграмм – эквиваленту магния (12,16 мг), также растворенному в 1 л воды.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Agrian.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: